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NEW SYNDROME DECODING TECHNIQUES FOR

CONVOLUTIONAL CODES OVER GF(q)

I. S. Reed

1. INTRODUCTION

.>This is a final report on a one-year study of techniques for improv-

ing the encoding and decoding of error-correcting codes. For the previous

three quarters emphasis was given to methods for making the encoding and

decoding of Reed-Solomon codes more efficient. These methods included

the possibility [1] of using Winograd's fast transforms for transform

encoding and decoding of Reed-Solomon codes, and studies for simplifying

the arithmetic of the Galois fields used in error-correcting codes. The

latter topic.4adrto an investigation [2) of the architecture needed to

$realize Berlekamp's new bit-serial multiplier [3] of Galois field ele-

ments and its generalization [4] to a symbol-serial multiplier. During

the last quarter a new syndrome decoding algorithm for convolutional

codes (CC) was conceived by the author (5]. In 4he-ee report this

jidea is extended to a greater generality. (

First, the algebraic nature and structure of convolutional codes

over a Galois field GF(q) is reviewed and developed. This background is

then used to find the general solution of the syndrome equations for the

error polynomial vector e(D) where D is the unit delay operator. In

particular it is shown that these syndrome equations are linear Diophantine

equations over the ring of polynomials in D and with coefficients in GF(q).

The methods of solving linear Diophantine equations for the integers are

then used to solve the syndrome equations for e(D).

.°L.To
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The set of Diophantine solutions of the syndrome equations consti-

tutes a coset of the convolutional code space or subgroup. The problem

of syndrome decoding is to find the minimum weight polynomial vector

e(D) of this coset to subtract from the received polynomial vector z(D)

to yield an estimate y(D) of the transmitted polynomial vector. In order

to find e(D) efficiently a new recursive, Viterbi-like algorithm is de-

vised. This new syndrome decoding algorithm is presented in this report

by example.

For a fixed convolutional code the new recursive syndrome decoder

for CC appears to be comparable in complexity to the Viterbi decoder

except that in the new decoder fewer comparisons are required and the

control logic is considerably simpler. However, if one wishes to design

a CC decoder for several different rate codes of the same constraint

length, it appears that the principles of the new syndrome decoder may

yield a simpler system than one could achieve using the Viterbi methods.

Thus for variable rate communication systems that utilize convolutional

codes the new syndrome decoding concept appears to have an advantage

over the standard Viterbi decoding techniques. A precise quantification

of this comparison is a topic for future study.

II. ALGEBRAIC STRUCTURE OF CONVOLUTIONAL CODES (CC)

Let aO , a1, a2 ... be any sequence of symbols from the finite field

F = GF(q) of q elements. Further let D be the unit delay operator. D

operates on a function x(n) of discrete time in accordance with the

definition

S D x(n) = x(n -1) (1)
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6 for all n. In terms of D the sequence {a.) is conveniently represented

by what is called its D-transform,

A(D) =a0 + a D + a2 D + ... (2)

in powers of the operator D.

One way to understand A(D) is to consider A(D) to be the output of

a symbol generating box. At the present instant of time the output is

a0; at one unit of time later the output is a,, the coefficient of D;

at two units of time later the output is a2, the coefficient of D ; and

so forth. Looked upon in this manner the D-transform converts an abstract

sequence {aj) of symbols from GF~q) into the same sequence of symbols

but now ordered in time. Assume in (2) that the coefficients commute

with DJ .

The input to a convolutional encoder is a set of k discrete-time

input sequences. In terms of D-transforms this input is represented

by the vector

x(D) = [xl(D), x2(D), Xk (D)] (3)

where

xj(D) Xoj + Xlj D + x2j D2 +

for ( * 1, 2, ... k) with coefficients in GF(q).

Very simply an encoder for a CC is some linear sequential circuit

over the finite field GF(q) with vector input x(D) and vector output
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y(D) [ [Y(D), Y2(D), ... , Yn(")] (4)

where n > K and

D2

Yr(D) = YOr + Ylr D + Y2rD +

for (r = 1, 2, ... n). For the standard (n, k) convolutional code

((n, k) CC) the linear relationship between the input and output is

assumed to have finite memory so that it can be expressed as a matrix

convolution of form

y(D) = x(D) G(D) (5)

where G(D) is a K x n matrix of polynomials of finite degree in D over

GF(q). G(D) in (5) is usually called the generating matrix of the

(n, k) CC or k/n rate CC and has the specific form, as a k x n matrix,

gll(D). g12(D) ... gln-

g21(D)- g22 (D)- "'" 2n(G(D) = (6)

gkl (o) . gk2 (o) I' ... gkn

The maximum degree M of the polynomials in G(D) is called the memory,

and the constraint length of the code is L = M + 1.

The elements of G(D) in (G) are polynomials in D over the finite

field F = GF(q). The set of all such polynomials in D over a field F

0 is an infinite ring F(D] as well as an integral domain since it has no
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divisors of zero. It can also be demonstrated that F[D] is a Euclidean

ring (see [6, Secs. 3.7 and 3.9).

If the elements of G(D) in (6) had been restricted only to members

of field F, it would generate a one dimensional vector space over field

F. However, since G(D) is a k x n matrix with elements in F[D], the in-

tegral domain in D over F, G(D) generates what is called a module over

the ring F[D). A module has the same postulates as a vector space ex-

cept that its scalars are elements of a ring rather than a field.

To characterize the algebraic properties of different generating

matrices G(D) over integral domain F[D] we follow the lead of Forney in

(7]. Forney bases his study of CC on the well-known invariant-factor

theorem of matrices over an integral domain. The statement of this the-

orem is reproduced for ring F[D] as follows:

Po Invariant-Factor Theorem: If F[D] is the integral domain F[D] and

G is a k x n matrix over F[D], then G has the invariant-factor decompo-

sition

G=ArB (7)

where A is a k x k matrix over F[D] with an inverse-A -1 with elements

in F[D]; B is a n x n matrix over F[D] also with an inverse 81 with

elements in F[D]; and r is a k x n matrix over F[D] of form

r = [r 1 , 0] (8)

with 0, a k x n - k matrix of zeros and r, a diagonal matrix of formC
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Yl, 0 ... 0

o, Y2  ... 0
r -(9)

0, O, ... Yk"

over R.

The diagonal elements yi in (9) for 1 < i < k are elements of F[D]

and are called the invariant factors of G. The invariant factors are

unique and can be computed as follows: Let A0 = 1. Let Ai be the

greatest common divisor (GCD) of all i x i subdeterminants (minors) of

G. Then yi = Ai/Ai-l" If yi+l O, then Yi divides Yi+l for i =

1, 2, ... k- I.

Forney in [6] sketches a proof of this theorem. Other more ele-

mentary and detailed expositions of this theorem can be found in certain

classic works on modern algebra, e.g., see [8; Sec. 10, Ch. III].

Rather than give a proof of this theorem it is perhaps better here to

illustrate the computational technique involved by an example.

For this example let F = GF(2) and consider the generating matrix,

G(D) G= - A [ B (10)
1+D D 0 2 0]

where A is a 2 x 2 matrix and B is a 3 x 3 matrix, both over F[D].

Matrices A and B can be obtained as a product of elementary row and

column operations, respectively. The elementary operations are of three

types:

=
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1) The interchange of any two rows (columns) is an elementary op-

eration of type 1.

it) Let any row (column) be multiplied by an element of FED]. The

addition of this result to any other row (column) is an elementary op-

eration of type 2.

iii) The multiplication of any row (column) by a nonzero scalar

of FED], i.e., a nonzero element of F, is an elementary operation of

type 3.

One procedure for finding A and B in (10) is to express (10) in the

form, I °o°D I +D{i °
1 0] G [ 0 (11)

1+0 DO [ 1

and reduce the left side to the form of r in (10) by elementary transfor-

mation. To put zeros in the second column of the first row multiply the

first column by 1 + D and add the result to the second column ofthe matrix

on the left. This same transformation is performed at the same time on

the 3 x 3 identity matrix on the right side of the equation. The result

is

[1. 0, 1 D [1 0] [0 1 0
Ll+D, l++DD 2 + lil 0+ 0

0 0 1000

0 where on the right a 'ew 3 x 2 dentity matrix multiplies the elementary
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transformation matrix

rI l+D 01

of type 2. Proceeding step by step in this fashion it is readily veri-

fied that the left side of (11) reduces finally to

[i 001°11001
1 +D0 10 +Dl 1 0 1 0 0

a=  1 0 1 1[00 1 1 0 1
1 U 0+D1U 0 1L

1 0 0 1 0l

x 1 01 0 1 D
[o D l-l00l

[I 1+D D4D 2 1
=[+D ] G [ D l:D2 = A G B (12)1 1+01D 1 +D+OD m2

For F = GF(2) it is easy to verify that an elementary matrix E over

F(D] is its own inverse, i.e., E-1 = E for an elementary matrix of types

1, 2 or 3. Thus solving for G in (12) yields

F1w
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r10 00 0 1 00]
1 1[10 r0 0

G(D) = [1 D 0 1 1 101

00 10 1 1 O 1

x[ 1 0 1 0 1

X 011 01 0 0 1 0

0 1 0 1 00 1

[1+ 1+D

= 10 +D+D 2 1+D = ArB (13)

0D+D 0 J

as the invariant-factor decomposition of G(D) in (10).

Let the generating matrix of a CC have the invariant-factor decom-

position in (7). Then the output of the encoder in (5) can be expressed

as

Y(D) = x(D) G(D) = x(D) A(D) r(D) B(D) (14)

where A(D) and B(D) have inverses A-I(D) and B1(D), respectively, and

r(D) is the k x n matrix

yl(D) 0 ... 0 ... 0

r(D) = 0 Y2(D) ... 0 ... 0 (15)

0 0 • Yk(D) ... 0

of invariant factors Yl(D), .Yk().

ii! ,t .

•- -- -
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SFor the encoding operation in (14) to be useful in the context of

a communications system it is desirable that the mapping of k-vectors

x(D) onto n-vectors y(D) over F[D] be one-to-one and reversible. For

this to be true there must exist a right inverse matrix G1I(D) of ma-

trix G(D). If G-I(D) exists, then

y(D) G-(D) = x(D) G(D) G-I(D) = x(D) Ik = x(D) (16)

where Ik is the k x k identity matrix and x(D) is uniquely recoverable

from the encoded message y(D). It will be assumed henceforth that the

generating matrix G(D) has a right inverse and that this inverse is

realizable in finite delay time.

By the invariant-factor theorem

G(D) = A(D) r(D) B(D)

Thus for G- (D) to exist the last invariant factor of r(D) must not be

zero, i.e., Yk 0 0. For otherwise, if Yk 0 O, then G(D) would have rank

less than k and as a consequence no inverse.

If Yk 0 0, then it can be verified that

G'I(D) = B-(D) r*(D) A-I(D) (17)

is an inverse for G(D) where r*(D) is dn n x k matrix with diagonal ele-

ments yl of form

I =(D) [ ] (18)

* *~ -'*~**,***~* *,i-



with Tr11(D) the inverse of r1 (D) in (9), i.e.,

( ) 0 ... 0
0- y (D) ... 0

r (D) = 0(19)

0 0 .. Y(D)

If deg YK(D) > 0, then by (19), (18) and (17) the circuit to realize (16)

would not be feedback-free.

Massey and Sain (9] proved that an inverse G- (D) or some delayed

version of it must be feedback-free in order to avoid CC that give rise

to catastrophic error propagation. Therefore, for an encoder to be use-

ful one must choose it to be feedback-free. If G- (D) is feedback-free,

deg yk(D) =1 and Y1 =Y2 . Yk =1 so that r must have the form

r = P1k, 0) (20)

where IK denotes a K x K identity matrix and 0 denotes a K x (n - K)

matrix of zeros.

The above properties needed for a useful encoder are recapitulated

in the following definition of a basic encoder given by Forney (71.

Definition: A basic encoder G(D) is a CC with a feedback-free in- [
verse G'(D). Both G(D) and G'I(D) are polynomial matrices over F(D],

such that G(D) G-I(D) = I

It was shown in detail by Forney [7] and briefly above that an en-

coder is basic if and only if it is polynomial over F[D] and has all

its Invariant factors equal to one. Henceforth in this report only
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basic encoders for CC will be treated so that by (20) and the invariant-

factor theorem the generating matrix for an (n, k) CC has the form

G(D) = A(D) (Ik' O] B(D) (21)

where [k is the k x k identity matrix.

Forney in [7, Appendix I] exhibits a parity-check matrix H(D) over

F[D] for a generating matrix which is equivalent to G(D) in (21). It

is shown here that this parity-check matrix is, in fact, the parity-

check matrix of all generating matrices equivalent to (21) in the sense

of Forney.

To treat the parity-check matrix the Euclidean ring F[D] is extended

to the field F(D) of quotients or rational functions of polynomials in

F(D], e.g., see (8; Sec. 3.8). In terms of sequences field F(D) is in

one-to-one correspondence with the field S of all possible infinite se-

quences that can be generated by an impulse passed through all finite

memory linear circuits with or without feedback.

Let g(l)(D), g(2)(D), , g(k)(D) be the k rows of matrix G(D)

in (21). Since G(D) has rank k,

V = aj(D) g(i)(D)l~j(D) c F(D)

is a k-dimensional vector space with respect to the field F(D) of scalars

or it is equivalent to the field S of sequences. The null space V of

V is a vector space with field F(D) of scalars of dimension n - k (see

[9, Sec. 3.2]). Let H(D) be any matrix with coefficients in ring F[D] of
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rank n - k'which has its row space equal to V4. Then the rows of H(D)

constitute a basis for V . Thus V is a null space of V * if and only if

for any vector Y(D) c V.

y(D) HT(D) = 0 (22)

Since g€j)(o) c V for (j = 1, 2, ... , k) condition (22) implies,

G(D) HT(D) = 0 (23)

An explicit method for constructing a parity matrix H(D) of all

generating matrices G(D) with form (21) will now be given. The coeffi-

cients of the parity-check matrix H(D), developed by this technique,

will be polynomials in D, i.e., elements from the Euclidean ring FED].

Let the first k rows of matrix G in (21) be a submatrix B1 and the

last (n - k) rows of B be a submatrix B2. Then B is the matrix

B = [BI] (24)
B2

in terms of submatrices B1 and B2. Similarly denote the first k columns

of the inverse matrix B -l of B by BI and denote the last (n -k) columns

of B-1 by Bi. Then the inverse of B is the matrix

B "1= (Bi , Bi) (25)

* Multiplying (24) and (25) yields

4-|



=B I= (26)

[828i , B2B] 10,  'n-k

and the matrix identities,

B1Bi = 1K,  B2Bi = 0 and (27)
B28j- = 0, B2Bk = 'n-k

Let

H(D) = (Bj)T, (28)

where "T" denotes transpose and Bi is defined in (25), be a candidate

for the parity-check matrix of G(D) in (21). Multiplying G(D) in (21)

by the transpose of H(D) in (28) produces by (24) and (27),

G(D) HT(D) = A[I, 0] ["1 Bj
B2

=[A, 0] [BBq

= [A, 0] = 0 (29)
[In- k ]

Since the n - k rows of H(D) are the n - k columns of the invertible

matrix B"I, these rows must be linearly independent. Thus H(D), as

Q defined in (2P), has rank (n - k) and is a valid parity-check matrix

for the general basic encoder G(D), given in (21).

iO
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The parity-check matrix H(O), associated with the general k x n

generator matrix G(D) of a basic encoder, is given by (28). However,

for two special cases, the systematic (n, k) CC and the non-systematic

(n, 1) CC a parity-check matrix can be found more directly. For example,

for the systematic (n, k) CC the parity-check matrix has form G(D) =

[I k' P(D)] where Ii is the k x k identity matrix and P(D) is a k x (n - k)

matrix of polynomials over F = GF(q). In this case it is readily veri-

fied [9] that H(D) = [-PT(D), In-k] is a parity-check matrix.

The generator matrix for the non-systematic (n, 1) CC has by (6)

the form

G(D) -- [g1 (D), g2 (D), ... gn(D)] (30)

where for simplicity the first subscript of g1j(D) has been dropped.

Condition (23) for the (l x n) generating matrix G(D) in (30) is easily

shown to be satisfied by the (n - 1) x n matrix

g2 (D), gl(D), 0, ... , 0

H(D) g3(D), 0 92(0), ..., 0 (31)

Sgn(D), 0, 00. G1(D)

so that it is a parity-check matrix of the (n, 1) CC generated by G(D)

in (30).

To illustrate how to use (28) to compute a parity-check matrix

consider again the example of a generating matrix, given in (10). By

(12) the matrix 81 for this G is

-. V
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6 1 1+D D+D2

B1 0 D I+D (32)
0 1+0 1+D+D 2

so that by (25) and (28)

H(D) = (B)T 2[ + D I + D2 + + D (33)

the transpose of the last column of 8 1 in (22). It is easily verified

that (23) satisfies (23), i.e., G(D) HT(D) = 0, and that H(D) is of rank

one. Hence H(D) in (23) is the parity-check matrix of the (3, 2) CC

with generating matrix G(D) in (10).

In the next section the parity-check matrix will be used to obtain

the syndrome of the received CC. A new decoding algorithm will then be

presented by example.

11. SOLUTIONS OF SYNDROME EQUATION FOR CONVOLUTIONAL CODES

Let y(D) be transmitted CC in accordance with (5) where G(D) is

the generating matrix for a basic encoder. Next let z(D) = y(D) + e(D)

be the received code possibly corrupted by an error or noise sequence

e(D). The syndrome S(D) of z(D) is defined by

S(D) = z(D) H T(D) (34)

where H(D) is syndrome (28) for the basic encoder.

Substituting (5) in syndrome (34) yields
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S(D) = (y(D) + e(D)) HT(D) = e(D) HT(D) + x(D) G(D) H'(D) (35)

But by construction (23) is satisfied, i.e., G(D) HT(D) = 0. Hence the

last term of (35) vanishes and

s(D) = e(D) HT(D) (36)

'is the syndrome in terms of an error sequence or polynomial e(D). The

syndrome for a basic (n, k) CC is by (36) totally independent of the

transmitted coded message y(D). The syndromes of block group codes also

have this property so one might suspect that it would be possible to use

syndromes to decode CC in a manner similar to that used for block codes.

VThe first step towards achieving this goal for CC, analogous to

that used for block codes, is to find the general solution for e(D) of

the syndrome equation (36), assuming that S(D) is computed by (34).

That is, given S(D) by (34), solve for the set of all solutions e(D)

of the syndrome equation (36).

To find the general solution of (36) again use is made of the im-

portant invariant-factor theorem of the last section. This theorem is

applied to the matrix

M(D) = HT (D) (37)

the transpose of the parity-check matrix in (36). By construction the

rank of H(D) is n - k, the maximum possible rank. Hence M(D) has the

RIZ
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Smith* normal form of the invariant-factor theorem,

M(D) = L(D) [] R(D) = HT(D) (38)

where L(D) and R(D) are invertible n x n and (n - k) x (n - k) matrices

over F(D), A = diag (XI X2' ... Xn-k)

A = diag (X,, X2, ... Xn-k) (39)

and "0" denotes a k x (n - k) matrix of zeros. The X.'s in (39) are the

invariant factors defined as follows: Let 60 = 1, let 6. be the GCD of

all j x j minors of M. Then X . = 6 i/6 and X. divides Xj+I for j =

I~, 2, ..., n - k -I

A lemma, due to Forney [7, Appendix I], is used to evaluate the

diagonal matrix A of invariant factors in (38). In the present termin-

ology this lemma is requoted as follows:

Lemma (Forney): The (n - k) x (n - k) minors of H(D) are equal up

to scalar field elements in F = GF(q) to the k x k minors of G(D).

Since the basic encoder has a generating matrix G(D) of form (21),

the k x k minors of G(D) have a GCD equal to 1. Hence by Forney's lemma

the (n - k) x (n - k) minors of H(D) also have a GCD equal to 1. Thus

1 - 6n- k = 
6n-k- 1 = = 1

The invariant-factor theorem was developed by the British mathe-
matician H.J.S. Smith in the middle of the 19th century.

ilililllljlll
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and the invariant factors of H T(D) are all 1. Therefore, A = In-k and

by (38)

M(D) = L(D) Ln k]RD) =HT()(0

is the Smith normal form of the transpose of a parity-check matrix for

a basic encoder.

To solve for e(D) first substitute expression (40) for H (D) into

(36). This yields [n1
S(D) = e(D) L(D) 1] R(D) (41)

Next multiply both sides of (41) by R-I(D) to obtain

a(D) D) R-(D) = [e(D) L(D)] [ = (D) [ ] (42)

where

o(D) = S(D) R'I(D) = [a,(D), ... , Onk(D)] (43)

is an (n - k)-component transformed vector of S(D) and

c(D) = e(D) L(D) = [cl(D), .. , cn(D)]  (44)

is an n-component transformed vector of the unknown polynomial error

vector e(D).
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The component-by-component solution of (42) is obtained by equating

comoonents of the equation

e()=a() for 0i = 1. 2, ... , n - k) (45a)

and

ej(D) = tjn+k(D) for ( = n -k +l,..., n) (45b)

where ti(D) for (i =1, 2, ... , k) is an arbitrary polynomial in the

Euclidean ring FED]. Substituting (45a) and (45b) into the right side

of (44) and solving for e(D) yields finally

=(a 1(D), on-k(D), t1(D), ... tk(D)j L1(0) (46)

as the general solution of the syndrome equation (36) in terms of the

n - k components of the transformed syndrome ca(D) in (42) and k arbitrary

polynomials parameters tj(D) of FfD] for 0(= 1, 2, ... , k).

Some examples of the above technique for solving the linear Diophan-

tine equations of the syndrome equation are now presented. Consider -

first the generating matrix

G(D) -(I + D2, 1 + D + D2], (47)

of a (2, 1) CC of constraint length L 3. It is easily deomonstrated

O that
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HT(D) +D

is the transpose of parity-check matrix. Diagonalizing HT(D) with ele-

mentary transformations yields

HT(D) I1+D (8
H +D2  L(D) (48)

as the Smith normal form for HT(D). Substituting (48) in (36) produces

S(D) = [el(D), e2 (D) ]  , l+D] [1]

2 2;~

=[(1 + D + D2) e,(D) + (1 + D e e2(D), (1 + D) e,(D) + e2 (D)]

(49)[E(D), n ()] [j49
The general solution of this equation for'c 1 and c2 is

cl(D) = S(D) and c2(D) = t(D) (50)

where t(D) is an arbitrary polynomial. The linear relation c(D) =

e(D) L(D) is solved by

-
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e(D) - Ee,(D), e2(D)J c(D) L-1(D)

= [el(D). e2(D)J[I. 1 2
D2,D 1 D

ro 1+D 1
= [S(D). t(D)] =[o2. i~2j

= [DS(D) + (1 + D 2) t(D), (1 + D) S(D) + (I + D + 02) t(D)]

where the solutions S(D) and t(D) in (49) have been substituted for

eiL)and FE2(D), respectively. Equating coefficients yields

el(D) = DS(D) + (1 + D02) + (0)

e2(D) = (1 + D) S(D) + (1 + D + D02) t(D) (51)

as the general solution for the syndrome equation in (36) for this ex-

ample of a CC where t(D) is an arbitrary element in F[D]. That (51)-

is,in fact,the solution of (36) can be verified by substitution.

for the next example consider the generating matrix

G(D) = [1 + 02,11 + 0+ 02, 0 D+ D2 ) (52)

of a (3, 1) CC with constraint length 3. Using the Forney method de-

veloped in the last section, a parity-check matrix for G(D) is readily

calculated to be
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H(D) = + 2. l+2 , 1 (53)
+D+D, D , 1]

The Smith normal form for H T(D) is given by

HT (D) L 0[ 1] (54)

where the inverse of L is

[o 1+D D

V1 D =[+2 1+0+02 I+D+D 2]()

Substituting (53) in (34) the syndrome is S(D) =z(D) HT(D). Hence

by (36) and (54) the syndrome equation to solve is r 0

S(D) = SI(D), S2(D)] = ([ei(D), e2(D) . e3(D)] L)[0 1j

= E,(D). Y D),. c3(D) 0 1 (56)

By (45a, b) the solution of (56) for c.(D) is
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=l(D) S(D), c2(D) = S2(D), c3(D) = t(D) (57)

where t(D) is an arbitrary element of F[D]. Finally the ei(D) in terms

of the solutions (57) is, using (55),

[el(D), e2 (D), e3 (D)] = [SI(D), S2 (D), t(D)] L-1

= EDSI(D) + (1 + D2) t(D), (I + D) SI(D)

+ (1 + D + D2) t(D), DSI(D) + S2 (D)

+ (1 + D + D2) t(D)]

This yields

el(D) = DSI(D) + (1 + D2) t(D)

e2 (D) = (1 + D) SI(D) + (I + 0 + D2) t(D)

e3(D) = DSI(D) + S2(D) + (I + D + D2) t(D) (58)

as the general solution of the syndrome equation (34) for the (3, 1)

encoder in (47).

For a final example consider the parity-check matrix, H(D) =

[D + D2, 1 + D2 , 1 + D + D2], found in (33) for the (3, 2) CC with gen-

erating matrix (10). A diagonization of HT(D) yields for this example
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0o l+D D 2

C 1(D I +D+02 +3 (59)

where L(D) is left invertible matrix of the Smith normal form in (40)

for HT (D). In this case the syndrome equation to solve for e(D) is

S(D) =[e,(D), e2(D), e 3(D)]

The solution in (60) for c(D) is

C1(D) = S(D). c2(D) = t1(D), c3 t2(D) (61)

where tl(D) and t2(D) are arbitrary elements or parameters of F[D].

Solving e(D) LI c(D) for e(D) in terms of the solution (61) for c(D).

is, using (59),

Ce1(D). e2(D), e3(D)] = S(D) 1, t1(D). t2(D)]

0 1+D 0

'0 I.0 i+o+D2 1+02 .
IAii
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which yields, upon an equating of coefficients,

el(D) - tl(D)

e2(D) = (1 + D) S(D) + (0 + D3) t1(D) + (I + D + D2) t2 (D)

e3(D) = DS(D) + (D2 + D3) tl(D) + (I + D2 ) t2(D) (62)

as the general solution of the syndrome equation (34) for the (3, 2) en-

coder in (10) in terms of two arbitrary parameters tl(D) and t2(D) in

F(DJ. It is a straightforward exercise to verify that (62) satisfies

(34). It will be shown in the next section by an example how to use

lw the solutions of the syndrome equation to perform optimum syndrome de-

coding.

IV. SYNDROME DECODING OF (n, k) CC

Syndrome decoding of an (n, k) CC involves finding a maximum like-

lihood estimate (MLE) e(D) of the actual error sequence in the coset,

determined by (46), of all possible solutions of the syndrome equation

(34). In order to accomplish this both the weight or distance between

codewords of a sequence and the type of channel need to be defined. For

an (n, k) CC a possible error sequence is of form e(D) = [e1(D), e2(D),

en(D)] where ej(D) for (j - 1, 2, ..., n) are finite degree polynomials

over GF(q). The usual weight for a discretized channel is the Hamming

weight. The Hamming weight of e(D) is

WH[e(D)] JA WHek(D)J (63)

Ord3
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where WH(ej(D)], the Hamming weight of ej(D), is the number of nonzero

coefficients of ek(D). It is convenient for this weight to assume that

the channel can be approximated by a q-ary channel (see [1, Sec. 7.2]).

If in (3) deg [xj(D)] < L- 1 for 1 < j < k, codeword y(D) =

(yl(D), Y2(D), ... , Yn(D)) is said to be the L-th truncation of an (n, k)

CC (see [11, p. 203)). In this case

deg [yi(D)] < M + L - 1 for 1 < i < n (64)

where M is the memory. Hence an L truncated (n, k) CC can be considered

to be a block code where each word has length n(L + M). Hence for a

truncated (n, k) CC the MLE of an error vector is what it would be for

a linear block code. For a truncated (n, k) CC transmitted over a q-ary

symmetric channel the MLE of e(D) is any vector e(D) of form (46) such

that

WH[e(D) .... (WH I (D), ' .nk(D), tj(D), tk(D)] L-I(D)] (65)

The above procedure for finding the MLE e(D) or the error vector,

needed to correct a codeword, is equivalent to the usual technique for

correcting block codes, e.g., see [10, Sec. 7.5]. A recursive technique

is developed now by example to perform the minimization required in (65).

The iterative minimization procedure, needed to efficiently find e(D),

is a Viterbi-like or dynamic programing type of algorithm.

As an example of the new syndrome decoding algorithm consider the

0(3, 1) CC with the generating matrix in (52) If (52) is substituted in

!W
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(4), then

lly Y2' Y3 = [x + D2x, x + Dx + Dx, x + Dx + D2x] (66)

is the output of the encoder. Assume the input sequence is x = [0 1 0 0 1 0].

Then by (66)

Yl = (0 1 0 1 1 0 1 0],

Y2 = [0 1 1 1 1 1 1 0],

Y3= [0 1 1 1 1 1 1 0]

are the three components of the transmitted sequence. Let the correspond-

ing three received sequences be

z= [1 0 1 1 0 1 0],

Z2 = [0 1 0 1 1 1 1 0),

Z3 = [0 1 1 0 1 1 1 0 (67)

Next substitute the parity-check matrix (53) of the (3, 1) CC in

(34) to obtain

S1  (1 + D + D2) z1 + (1 + D2) z2

$2 (1 + D + D2 ) z1 + D2 z2 + z3 (68)



-29-

as the syndromes of the code. A calculation of the syndromes in (68)

in terms of the received sequence [z1, z2, z3] in (67) yields the syndrome

sequences

S1 = (110010000) 

S2 =( 1 1 1 1 0 0 00] (69)

for this example. Given the syndrome sequences (69) it is desired now

to solve syndrome equation (36) for the error vector sequence e(D).

The explicit general solutions of the syndrome equation in (36) for

the components of e(D) were found in (58) of the last section. These

solutions are explicitly

e, = DSl + t + Dt

e2 = S + DS1 + t + Dt + Dt2 t

e3 = DS1 + S2 + t + Dt + D2t (70)

where t is an arbitrary polynomial in F[D] and where for simplicity in

notation the functional dependence on D of such functions as S,(D), t(D),

etc., is deleted. Note that physically the functions DS1 , D2t, etc., in

(69) can be interpreted as the function SI(D), delayed by one time unit,

and the function t(D), delayed by two time units, respectively.

The problem now is to find from (70) and the given syndrome sequen-

e0 (ces (69) the MLE e of e = (e1, e2, e3]. As In the Viterbi decoding
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algorithm e is found iteratively or sequentially with the aid of a

trellis diagram (see [12]). However, in the present case the underly-

ing trellis diagram is "universal" in the sense that it is identical

for all (n, k) CC of fixed k and constraint length L.

For the present example the states of the trellis diagram are

equivalent to the states of the shift register needed in (70) to store

sequentially the delayed versions*Dt(D) and D2t(D) of the arbitrary

function t(D) on F. The block diaqram of a shift register to hold Dt

and D2t, the function t, delayed by one time unit and two time

units, respectively, is shown in Figure 1. The state table of the

shift register in Fig. 1, when conceived to be a sequential circuit,

is given in Figure 3. Finally, in Figure 3 the trellis diagram of the

state table in Fig. 2 is presented. A solid-line transition in Fig. 3

corresponds to the input t(D) = 0; a dashed-line transition corresponds

to the input t(D) = 1.

The new Viterbi-like syndrome decoding algorithm is illustrated

by example in Figure 4. The digits of the syndrome sequences Sl and

S2 computed in (69) are placed immediately over the corresponding

transition paths of the trellis. The vectors [e,, e2 , e3] are computed -

at each stage from equations (70), using the syndrome data for S I DSI

and S2 and data t, Dt and D 2t, depending on the particular path taken.

To illustrate the above procedure suppose that the algorithm has

reached stage 2 at state d = 11. At stage 2 the required values of the

syndrome sequence needed in (70) are

SS 1 = O, DSI = I and S2 = 1 (71)
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t(D) D D

Dt(D) Dt(D)

Eijqtire_1. Shift register to generate delayed versions of t(D)

t
Dt D 2 t 0 1

a =0 0 0 0 1 0

b 0 1 0 0 1 0

c =1 0 0 1 1 1

d =1 1 0 1 1 1

Figure 2. State table of shift register for t(D)

Dt D2t

a 0 0 4 %%% 
%

c 1 0 6

0 1 2 3 4 5 6

Figuree3. Trellis diagram of shift register for t(D). Input
t(D) = 0 is represented by solid line. t(0) - 1 is
represented by a dashed line.
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SI  [1 0 0 1 0 0 0 0]

S2 =( 1 1 1 1 0 0 0 0]

Ot O2t
[011) 2 [101) 4 5 4 [011) 6 3 [000) 3 [000) 3 [000) 3

a =00 -
[100", [010", [001), [ o110 o

b 0 1 " ' ', 6 6
", *, , o'. oo* o .

0011 , ,[000)' [000. [000]', .
3'b , "k'6 '6 '6 '.8

c 1 [000 [100 R' * 1, . "
[01, [100) I[100i, [100iK ,

d.l [ 101] [010] 4000

Staqe 0 1 2 3 4 5 6 7 8 9

e = [100 000 010 001 000 000 000 000 000]

Note: Each branch of the trellis is labeled with [e1 , e2 , e3] where e1 =

DS1 + t + Dt, e2 
= s1 + DS1 + t = Dt + D

2t, and e3 = DS1 + S2 + t + Dt +

4, D2t. Each node at stage k is labeled with WH[e(k)(D), e~k)(D), e(k)(D)]

where e k)(D) is polynomial e.(D) truncated at degree k.

Figre4. A new Viterbi-like syndrome
dd ing algorithm for (3, 1) CC

Since the previous two values of t leading to state d at stage 2 are 1,

Dt = l and D2t =1 (72)

If the t = 1 branch is taken in the trellis from stage 2 and state d,

a substitution of (71) (72) and t -1 into (70) yields
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[e 1 , e2 , e3 ) = [0, 1, 0

as the values of e along that segment of the path.

After stage 2 in Fig. 3 there are always two possible transitions

leading to a given node in the trellis. The transition chosen is the one

of minimum weight. This is precisely the technique of dynamic programming

to determine a minimum weight path. A similar method is used in the

Viterbi-algorithm to find a transmitted codeword that is closest in

Hamming weight to the received codeword.

The trellis diagram shown in Fig. 4 is completed by the above illus-

tration and the dynamic programming rules for choosing the "survivor"

segment of path. At state 9 the minimum weight path in the trellis

diagram of Figure 4 is clearly a c d b c b a a a a. The branches of

this path yield

e(D) = Eel(D), e2(D), e3(D)] - [1, D2 , D3]

as the estimate of error vector e(D). Subtracting these estimates of

the error from the components of z in (67) produces

Yl - [0 1 0 1 1 0 1 0]

A Y2 [0 1 1 1 1 1 1 0)

Y3 [0 1 1 1 1 1 1 0 (73)0
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The Smith normal form of the (3, 1) CC generating matrix G(D) in (52)

is

G(D) E1 0 0) B

where

B 1+D l+D+D2  1+D+02

10 0 1 A

Thus the estimiate x(D) of message in terms of the estimate of the trans-

C mitted codeword Y(D) is

y = x G = x[l 0 0] B

Solving this relationship for x,

x y G- y B-1 [0
IDl+D+D2  1+0+0 2 1

A Dy~v3~ 1+D02 1 +o2  0]

0I + (1+) yl + DY (74)
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since by (17)

1G"1 =B -1 0

1

is the right inverse of G. A substitution of the estimates of yl and

Y2 in (73) into (74) yields finally x = [0 1 0 0 10] as the estimate

of the original message.

In the above example the new syndrome decoding algorithm produced

the original message. However, if the number of errors exceeds the

free distance df within any interval less than some multiple of the

constant length, there may exist two or more paths of the same minimum

error weight. In such a case a decoding failure and an erasure should

be declared.

V. CONCLUSIONS

In this report four new developments in (n, k) convolutional codes

with basic encoders are made. A method of Forney is extended to find

the syndrome H(D) of a.,y basic encoder with generating matrix G(D).

Second, a general method, based on the Smith normal for matrices over

a Euclidean ring is used to solve the syndrome equation for all pos-

sible error vectors e(D). The general solution of the syndrome equa-

tion for an (n, k) code is shown in (46) to have the explicit form,

e(D) = [al(D)t a n-k(D). tl(D), ... tk(D)] L1(D)

0 where ti(D) for (I = 1, 2, ... , k) is an arbitrary polynomial in the
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Euclidean ring F[D] and o(D) for (j = 1, 2, ..., n - k) computable

linear functions of the (n - k) syndromes SI(D), ... , Sn-k(D).

Next a Viterbi-like algorithm is developed to find the minimum

Haiuing-weight error-vector e(D) from all solutions of the syndrome

equation. e(D) is the maximum likelihood estimate (MLE) of e(D) within

the coset of all solutions of the syndrome equation. The estimate e(D)

is subtracted from the received codeword z(D) to obtain the MLE y(D) of

the transmitted codeword. Finally a method of Forney [7] and Massey

and Sain [9] is extended and applied to find the inverse circuit needed

to obtain the decoded message x(D) from y(.D).

The new syndrome decoder for the (n, k) CC developed herein appears

to be comparable in complexity to the Viterbi decoder. Possibly the

tp control logic and the computations associated with the trellis are some-

what simpler in the new decoder. Another advantage of the new encoder

may be obtained from the ease with which codes with the same constraint

length, but with different rates, can be switched. Detailed comparisons

of the new syndrome decoder with the Viterbi decoder are clearly topics

for several future studies.
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